Acta Cryst, (1968). B24, 1395

Table 1 (cont.)

do

1.80

1.619

1.604

1.581

1.443

1.429

1.407

1.400

1.397

 d_{c}

1.805

1.797

1.728

1.709

1.621

1.605

1.589

1.584

1.574

1.555

1.536

1.522

1.509

1.444

1.429

1.407

1.400

1.397

1.379

 I_0

w

w

w

w

т

vw

w

т

w

The unit-cell constants of some PuNi₃-type compounds*. By A. E. DWIGHT, Metallurgy Division, Argonne National

Laboratory, Argonne, Illinois 60439, U.S.A.

(Received 7 June 1968)

Crystal structure data, including unit-cell constants and observed intensities obtained from powder patterns, are presented for UCo₃ and other PuNi₃-type compounds.

hkl

119

207

208

1,0,13

0 0,15

1,0,14

2 0,10

211

212

1,1,12

214

2,0,11

215

217

1,0,16

218

300

2,0,13

303

Earlier work (Elliott, 1965) on the U-Co system indicated that the compound UCo₃ was formed at ~880°C by a peritectoid reaction. The crystal structure of the compound was not identified. Our investigation shows that UCo3 is isostructural with PuNi₃, which was reported (Cromer & Olsen, 1959) to be rhombohedral, $R\overline{3}m$.

The UCo₃ compound investigated was prepared by arc melting electrolytic uranium and 99.99% Co under an argon-helium atmosphere. The button was homogenized at 800°C for four days, and a powdered specimen was annealed at 800 °C for 18 hours. X-ray diffraction patterns were obtained with a Debye-Scherrer camera and chromium $K\alpha$ radiation. Although the structure is rhombohedral, the diffraction pattern was indexed on the basis of the related hexagonal unit cell. The unit-cell constants were cal-

* This work performed under the auspices of the U.S. Atomic Energy Commission.

Table	1.	UC03	structural	' data	based	on a	hexagonal	unit	celi	l
-------	----	------	------------	--------	-------	------	-----------	------	------	---

. UC03 <i>si</i>	tructural data b	ased on a hexa	gonal unit cell	1,0,17		1.334	
6	1 (77	2 200(2 1)		0 0,18		1.351	
Ci	r radiation (Ka	I = 2.28962 A		1,1,15	1.347	1.348	т
hkl	$d_{\rm o}$	d_{c}	Io	2 0,14	1.338	1.338	m
101	4·105 Å	4·138 Å	w	2,1,10		1.329	
006		4.052		306	1.322	1.323	S
102		3.969		2,1,11	1.289	1.289	m
104		3.455		309	1.2425	1.2429	w
105		3.179		2,0,16		1.2312	
009		2.702		1,0,19	1.225	1.2242	w
107	2.66	2.677	m	220	1.2123	1.2123	S
108	2.45	2.462	m	2,1,13		1.2103	
110	2.412	2.425	m	2 2 3		1.1990	
113		2.329		2,0,17	1.182	1.1822	m
1.0.10		2.104		1,1,18		1.1801	
201	2.09	2.092	т	2,1,14	1.1718	1.1717	S
116	2.075	2.081	5	1,0,20		1.1679	
202		2.069		311	1.1632	1.1634	т
0 0.12	2.022	2.026	vw	226		1.1615	
204	1.98	1.985	UW	312		1.1594	
1,0,11	1.95	1.956	UW	0,0,21	1.128	1.1579	т
205	1.925	1.928	w	3,0,12		1.1218	

Table 2. Unit-cell constants of PuNi₃-type compounds based on the related hexagonal unit cell

а	с	c/a	Vol/M	Heat treatment*
4.8492 (2)	24.317 (1)	5.02	55.03	
5.1654 (7)	24.707 (2)	4.78	63.43	(a)
5.1097 (3)	24.526 (1)	4.80	61.6	<i>(b)</i>
5.0156 (3)	24.424 (1)	4.87	59.13	(<i>c</i>)
4.955 (2)	24.101 (9)	4.86	56.94	(<i>d</i>)
4.958 (3)	24.33 (1)	4.91	57•4	(a)
4.948 (2)	24.27 (1)	4.91	57.18	<i>(a)</i>
4.937 (2)	24.213 (9)	4.90	56.79	(a)
	a 4·8492 (2) 5·1654 (7) 5·1097 (3) 5·0156 (3) 4·955 (2) 4·958 (3) 4·948 (2) 4·937 (2)	ac $4\cdot 8492$ (2) $24\cdot 317$ (1) $5\cdot 1654$ (7) $24\cdot 707$ (2) $5\cdot 1097$ (3) $24\cdot 526$ (1) $5\cdot 0156$ (3) $24\cdot 424$ (1) $4\cdot 955$ (2) $24\cdot 101$ (9) $4\cdot 958$ (3) $24\cdot 33$ (1) $4\cdot 948$ (2) $24\cdot 27$ (1) $4\cdot 937$ (2) $24\cdot 213$ (9)	ac c/a $4\cdot 8492$ (2) $24\cdot 317$ (1) $5\cdot 02$ $5\cdot 1654$ (7) $24\cdot 707$ (2) $4\cdot 78$ $5\cdot 1097$ (3) $24\cdot 526$ (1) $4\cdot 80$ $5\cdot 0156$ (3) $24\cdot 424$ (1) $4\cdot 87$ $4\cdot 955$ (2) $24\cdot 101$ (9) $4\cdot 86$ $4\cdot 958$ (3) $24\cdot 33$ (1) $4\cdot 91$ $4\cdot 948$ (2) $24\cdot 27$ (1) $4\cdot 91$ $4\cdot 937$ (2) $24\cdot 213$ (9) $4\cdot 90$	ac c/a Vol/M $4\cdot8492$ (2) $24\cdot317$ (1) $5\cdot02$ $55\cdot03$ $5\cdot1654$ (7) $24\cdot707$ (2) $4\cdot78$ $63\cdot43$ $5\cdot1097$ (3) $24\cdot526$ (1) $4\cdot80$ $61\cdot6$ $5\cdot0156$ (3) $24\cdot424$ (1) $4\cdot87$ $59\cdot13$ $4\cdot955$ (2) $24\cdot101$ (9) $4\cdot86$ $56\cdot94$ $4\cdot958$ (3) $24\cdot33$ (1) $4\cdot91$ $57\cdot4$ $4\cdot948$ (2) $24\cdot27$ (1) $4\cdot91$ $57\cdot18$ $4\cdot937$ (2) $24\cdot213$ (9) $4\cdot90$ $56\cdot79$

(a) Button homogenized 3 days at 1000 °C; powder not annealed.

(a) Button homogenized 5 days at 100° C; powder not annealed.
(b) Button homogenized 5 days at 500°C; powder annealed 3 hr at 500°C.
(c) Button homogenized 5 days at 500°C; powder annealed 3 hr at 500°C.

(d) Button homogenized 5 days at 900°C; powder annealed 21 hr 900°C.

culated by the computer program of Mueller, Heaton & Miller (1960), and the d spacings were obtained by the program of Mueller, Meyer & Simonsen (1962). The density, measured by the immersion method, is 12.44 g.cm⁻³, and the X-ray density is 12.52 g.cm⁻³. The observed and calculated d spacings and observed intensities are listed in Table 1. The observed intensities are in satisfactory agreement with the observed and calculated F^2 values reported by Bertaut, Lemaire & Schweizer (1965) for HoCo₃. The unit-cell constants of UCo3 and of several isostructural rare-earth compounds are listed in Table 2. In this Table the Figure in parentheses is the least-squares standard error of the last significant digit. The rare-earth compounds received various heat treatments (see Table 2), but all X-ray patterns were equally well resolved.

The author acknowledges the assistance of R. A. Conner, Jr. and J. W. Downey in the experimental work, and thanks to Dr J. B. Darby, Jr for reviewing the manuscript.

References

BERTAUT, E. F., LEMAIRE, R. & SCHWEIZER, J. (1965). Bull. Soc. franc. Minér. Crist. 88, 580.

CROMER, D. T. & OLSEN, C. E. (1959), Acta Cryst. 12, 689.

ELLIOTT, R. P. (1965). In Constitution of Binary Alloys, First Supplement. New York: McGraw Hill.

MUELLER, M. H., HEATON, L. & MILLER, K. T. (1960). Acta Cryst. 13, 828.

MUELLER, M. H., MEYER, E. F. H. & SIMONSEN, S. H. (1962). ANL-6519, Argonne National Laboratory, Argonne, Illinois,

Acta Cryst. (1968). B24, 1396

Crystallographic data on disubstituted symmetric ureas. By S. V. DESHAPANDE, Physics Department, Sardar Patel University, Vallabh Vidyanagar, Gujarat State, India and C.C. MEREDITH and R.A. PASTERNAK,* Stanford Research Institute, Menlo Park, California 94025, U.S.A.

(Received 5 June 1968)

The unit-cell dimensions and space groups of six disubstituted, symmetric ureas $(RHN)_2C=O$ have been established. The substituents R in this series were phenyl, p- and m-tolyl, m- and o-chlorophenyl and p-anisyl. Similar packing of the molecules in the unit cells is suggested by the data.

We report here the unit cells and space groups of six disubstituted symmetric ureas, $(RHN)_2C=O$, with R=phenyl, p- and m-tolyl, m and o-chlorophenyl and p-anisyl.

* Fulbright Professor, Sardar Patel University, Guiarat,

slow evaporation of their solutions in 96% ethanol. They all showed good cleavage along two directions parallel to the needle axis and no cleavage perpendicular to it. Preliminary unit-cell dimensions were derived by indexing rotation photographs around the needle axis which was

	Number								
	Molecular weight	a A	xial lengt	hs c	Measured density	of molecules	Space group	Crystal system	Remarks
Urea* Diphenyl- urea	60·06 212·25	5∙66 Å 10∙51	5·66 Å 11·73	4·72 Å 9·07	1·33 g.cm ⁻³ 1·23	2·02 3·90	$P\overline{4}2_1m$ $P2_1cn$	Tetragonal Orthorhombic	
Di-p-tolyl- urea	240.29	9.85	27.77	4.66	1.26	4.02	$Pn2_1a$	Orthorhombic	
Di- <i>m</i> -tolyl- urea	240-29	9.72	14.56	4.60	1.25	2.04	$P2_12_12$ ($P2_12_12_1$)	Orthorhombic	
Di- <i>m</i> -chloro- phenylurea	281.14	9.72	14.36	4.55	1•47	2· 00	$P2_12_12$ (P2_12_12_1)	Orthorhombic	
Di-o-chloro- phenylurea	281.14	23.00	23.20	4.64	1.48	7.85	Pban	Orthorhombic	Poor crystals. $h=2n$ very weak for $h00$, $h01$ k=2n, very weak for 0k0, $0k1$
Di- <i>p</i> -anisyl- urea	272•29	$(y^* = 21 \cdot 20)$ $(= d_{100})$	$(=d_{010})^{13\cdot38}$	9.31	1.35	7.95	P1 or PT	[.] Triclinic	Odd layer lines on rota- tion about c axis very weak. $hk0$ with $h+k$ odd absent; h and k odd very weak.

Table 1. Crystal data for urea derivatives

* Vaughan & Donohue (1952).

India, 1966/67.

Needle crystals were obtained for all the compounds by