Acta Cryst. (1968). B24, 1395
The unit-cell constants of some PuNi ${ }_{3}$-type compounds*. By A. E. Dwight, Metallurgy Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
(Received 7 June 1968)
Crystal structure data, including unit-cell constants and observed intensities obtained from powder patterns, are presented for UCo_{3} and other PuNi_{3}-type compounds.

Earlier work (Elliott, 1965) on the U-Co system indicated that the compound UCo_{3} was formed at $\sim 880^{\circ} \mathrm{C}$ by a peritectoid reaction. The crystal structure of the compound was not identified. Our investigation shows that UCo_{3} is isostructural with PuNi_{3}, which was reported (Cromer \& Olsen, 1959) to be rhombohedral, $R \overline{3} m$.

The UCo_{3} compound investigated was prepared by arc melting electrolytic uranium and 99.99% Co under an argon-helium atmosphere. The button was homogenized at $800^{\circ} \mathrm{C}$ for four days, and a powdered specimen was annealed at $800^{\circ} \mathrm{C}$ for 18 hours. X-ray diffraction patterns were obtained with a Debye-Scherrer camera and chromium $K \propto$ radiation. Although the structure is rhombohedral, the diffraction pattern was indexed on the basis of the related hexagonal unit cell. The unit-cell constants were cal-

[^0]Table 1. UCo_{3} structural data based on a hexagonal unit cell Cr radiation ($K \alpha_{1}=2 \cdot 28962 \AA$)

$h k l$	d_{o}	d_{c}	I_{o}
1001	$4.105 \AA$	$4 \cdot 138 \AA$	w
006		4.052	
102		3.969	
104		3.455	
105		3.179	
009		2.702	
107	2.66	2.677	m
108	2.45	2.462	m
110	2.412	2.425	m
113		2.329	
$1,0,10$		2.104	
201	2.09	2.092	m
116	2.075	2.081	s
202		2.069	
00,12	2.022	2.026	$v w$
204	1.98	1.985	$v w$
$1,0,11$	1.95	1.956	$v w$
205	1.925	1.928	w

Table 1 (cont.)

hkl	d_{0}	$d_{\text {c }}$	I_{0}
119	1.80	1.805	w
207		1.797	
208		1.728	
1,0,13		1.709	
00,15	1.619	1.621	w
1,0,14	1.604	1.605	w
20,10		1.589	
211	1.581	1.584	w
212		1.574	
1,1,12		1.555	
214		1.536	
2,0,11		1.522	
215		1.509	
217	1.443	1.444	m
1,0,16	1.429	1.429	vw
218	1.407	$1 \cdot 407$	w
300	$1 \cdot 400$	1.400	m
2,0,13	$1 \cdot 397$	$1 \cdot 397$	w
303		1.379	
1,0,17		$1 \cdot 354$	
00,18		$1 \cdot 351$	
1,1,15	$1 \cdot 347$	$1 \cdot 348$	m
20,14	$1 \cdot 338$	$1 \cdot 338$	m
2,1,10		1.329	
306	$1 \cdot 322$	1.323	s
2,1,11	$1 \cdot 289$	1.289	m
309	$1 \cdot 2425$	1-2429	w
2,0,16		$1 \cdot 2312$	
1,0,19	1.225	$1 \cdot 2242$	w
220	1.2123	$1 \cdot 2123$	s
2,1,13		$1 \cdot 2103$	
223		$1 \cdot 1990$	
2,0,17	$1 \cdot 182$	$1 \cdot 1822$	m
1,1,18		$1 \cdot 1801$	
2,1,14	1-1718	$1 \cdot 1717$	s
1,0,20		1.1679	
311	$1 \cdot 1632$	$1 \cdot 1634$	m
226		$1 \cdot 1615$	
312		$1 \cdot 1594$	
0,0,21	$1 \cdot 158$	$1 \cdot 1579$	m
3,0,12		$1 \cdot 1518$	

Table 2. Unit-cell constants of PuNi ${ }_{3}$-type compounds based on the related hexagonal unit cell

Compound	a	c	c / a	Vol $/ M$	Heat treatment*
UCo_{3}	$4.8492(2)$	$24.317(1)$	5.02	55.03	
GdFe_{3}	$5.1654(7)$	$24.707(2)$	4.78	63.43	(a)
HoFe_{3}	$5.1097(3)$	$24.526(1)$	4.80	61.6	(b)
TbCo_{3}	$5.0156(3)$	$24.424(1)$	4.87	59.13	(c)
LuCo_{3}	$4.955(2)$	$24.101(9)$	4.86	56.94	(d)
HoNi_{3}	$4.958(3)$	$24.33(1)$	4.91	57.4	(a)
ErNi_{3}	$4.948(2)$	$24.27(1)$	4.91	57.18	(a)
TmNi_{3}	$4.937(2)$	$24.213(9)$	4.90	56.79	(a)

* (a) Button homogenized 3 days at $1000^{\circ} \mathrm{C}$; powder not annealed.
(b) Button homogenized 19 hr at $900^{\circ} \mathrm{C}$; powder not annealed.
(c) Button homogenized 5 days at $500^{\circ} \mathrm{C}$; powder annealed 3 hr at $500^{\circ} \mathrm{C}$
(d) Button homogenized 5 days at $900^{\circ} \mathrm{C}$; powder annealed $21 \mathrm{hr} 900^{\circ} \mathrm{C}$.
culated by the computer program of Mueller, Heaton \& Miller (1960), and the d spacings were obtained by the program of Mueller, Meyer \& Simonsen (1962). The density, measured by the immersion method, is $12.44 \mathrm{~g}_{\mathrm{cm}} \mathrm{cm}^{-3}$, and the X-ray density is $12.52 \mathrm{~g} . \mathrm{cm}^{-3}$. The observed and calculated d spacings and observed intensities are listed in Table 1. The observed intensities are in satisfactory agreement with the observed and calculated F^{2} values reported by Bertaut, Lemaire \& Schweizer (1965) for HoCo_{3}. The unit-cell constants of UCO_{3} and of several isostructural rare-earth compounds are listed in Table 2. In this Table the Figure in parentheses is the least-squares standard error of the last significant digit. The rare-earth compounds received various heat treatments (see Table 2), but all X-ray patterns were equally well resolved.

The author acknowledges the assistance of R. A. Conner, Jr, and J. W. Downey in the experimental work, and thanks to Dr J. B. Darby, Jr for reviewing the manuscript.

References

Bertaut, E. F., Lemaire, R. \& Schweizer, J. (1965). Bull. Soc. franc. Minér. Crist. 88, 580.
Cromer, D. T. \& Olsen, C. E. (1959). Acta Cryst. 12, 689.
Elliott, R. P. (1965). In Constitution of Binary Alloys, First Supplement. New York: McGraw Hill.
Mueller, M. H., Heaton, L. \& Miller, K. T. (1960). Acta Cryst. 13, 828.
Mueller, M. H., Meyer, E. F. H. \& Simonsen, S. H. (1962). ANL-6519, Argonne National Laboratory, Argonne, Illinois.

Acta Cryst. (1968). B24, 1396

Crystallographic data on disubstituted symmetric ureas. By S. V.Deshapande, Physics Department, Sardar Patel University, Vallabh Vidyanagar, Gujarat State, India and C.C.Meredith and R.A.Pasternak,* Stanford Research Institute, Menlo Park, California 94025, U.S.A.
(Received 5 June 1968)
The unit-cell dimensions and space groups of six disubstituted, symmetric ureas (RHN$)_{2} \mathrm{C}=\mathrm{O}$ have been established. The substituents R in this series were phenyl, p - and m-tolyl, m - and o-chlorophenyl and p-anisyl. Similar packing of the molecules in the unit cells is suggested by the data.

We report here the unit cells and space groups of six disubstituted symmetric ureas, $(\mathrm{RHN})_{2} \mathrm{C}=\mathrm{O}$, with $\mathrm{R}=$ phenyl, p - and m-tolyl, m and o-chlorophenyl and p-anisyl.

* Fulbright Professor, Sardar Patel University, Gujarat, India, 1966/67.

Needle crystals were obtained for all the compounds by slow evaporation of their solutions in 96% ethanol. They all showed good cleavage along two directions parallel to the needle axis and no cleavage perpendicular to it. Preliminary unit-cell dimensions were derived by indexing rotation photographs around the needle axis which was

Table 1. Crystal data for urea derivatives

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& Molecular weight \& $$
a^{\mathrm{A}}
$$ \& $$
\begin{aligned}
& \text { xial lengtl } \\
& b
\end{aligned}
$$ \& c \& Measured density \& $$
\begin{gathered}
\text { Number } \\
\text { of } \\
\text { molecules }
\end{gathered}
$$ \& Space group \& Crystal system \& Remarks

\hline Urea* \& 60.06 \& 5.66 A \& 5.66 Å \& 4.72 Å \& $1.33 \mathrm{~g} . \mathrm{cm}^{-3}$ \& 2.02 \& $P^{4} 2_{1}{ }^{\text {m }}$ \& Tetragonal \&

\hline Diphenylurea \& $212 \cdot 25$ \& 10.51 \& 11.73 \& 9.07 \& 1.23 \& 3.90 \& $P 2_{1}$ cn \& Orthorhombic \&

\hline Di-p-tolylurea \& $240 \cdot 29$ \& 9.85 \& 27.77 \& $4 \cdot 66$ \& $1 \cdot 26$ \& 4.02 \& $P{ }_{2}{ }_{1} a$ \& Orthorhombic \&

\hline Di-m-tolylurea \& $240 \cdot 29$ \& 9.72 \& 14.56 \& $4 \cdot 60$ \& 1.25 \& 2.04 \& $$
\begin{aligned}
& P 2_{1} 2_{1} 2 \\
& \left(P 2_{1} 2_{1} 2_{1}\right)
\end{aligned}
$$ \& Orthorhombic \&

\hline Di- m-chlorophenylurea \& 281-14 \& 9.72 \& 14.36 \& 4.55 \& 1.47 \& 2.00 \& $$
\begin{aligned}
& P 2_{1} 2_{1} 2 \\
& \left(P 2_{1} 2_{1} 2_{1}\right)
\end{aligned}
$$ \& Orthorhombic \&

\hline Di-o-chlorophenylurea \& 281.14

272.29 \& $\begin{aligned} & 23.00 \\ & \\ & \\ & \\ & \gamma^{*}=\end{aligned}$ \& $23 \cdot 20$
$81^{\circ} \mathrm{O}$ \& $4 \cdot 64$ \& 1.48
1.35 \& 7.85
7.95 \& Pban

P1 or PT \& Orthorhombic \& Poor crystals. $h=2 n$, very weak for $h 00, h 01$. $k=2 n$, very weak for $0 k 0,0 k 1$

\hline Di-p-anisylurea \& $272 \cdot 29$ \& \[
$$
\begin{aligned}
& \left(\gamma^{*}=\right. \\
& 21 \cdot 20 \\
& \left(=d_{100}\right)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \left.81^{\circ}\right) \\
& 13 \cdot 38 \\
& \left(=d_{010}\right)
\end{aligned}
$$
\] \& $9 \cdot 31$ \& 1.35 \& $7 \cdot 95$ \& $P 1$ or PT \& ${ }^{\text {Triclinic }}$ \& Odd layer lines on rotation about c axis very weak. $h k 0$ with $h+k$ odd absent; h and k odd very weak.

\hline
\end{tabular}

[^0]: * This work performed under the auspices of the U.S. Atomic Energy Commission.

